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Statistics and Medieval Astronomical Tables

B. van Dalen

1. INTRODUCTION

Around the year 150 A.D. the Greek scientist Claudius Ptolemy, who lived
and worked in Alexandria in present-day Egypt, compiled his main astro-
nomical work, the Almagest. In this work he not only collected the most im-
portant achievements of his predecessors, in particular Hipparchus (Rhodes,
second century B.C.), but he also developed the first accurate geometrical
models for the motion of the moon and the five visible planets as seen from
the earth. Ptolemy computed large sets of tables, mostly of complicated
functions based on plane or spherical trigonometry, by means of which the
geocentric positions of the sun, moon and planets could be calculated at the
cost of only a small number of additions and multiplications.

Ptolemy’s astronomical work was highly influential till the end of the
Middle Ages. From the ninth till the sixteenth century Muslim astronomers
from Afghanistan till Spain and from Yemen till Constantinople (see also
figure 1) used the Almagest as a prototype for their own astronomical hand-
books with tables, which were mainly written in Arabic or Persian. Only
incidentally they made modifications to the Ptolemaic planetary models,
but In many cases they increased the accuracy ot the calculations under-
lying the tables, in particular by determining more accurate values for the

basic trigonometric functions. Furthermore, they made new observations ot

the motions of the sun, moon and planets, on the basis of which they im-
proved upon the values of the parameters underlying the models. In some
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Figure 1. Astronomers at work
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cases, e.g., the eccentricity of the solar orbit or the oblignity of the ecliptic
(the angle between the equator and the plane in which the apparent vearly
motion of the sun takes place). these values had actually changed during the
centuries. In other cases, e.g. the length of the solar vear, the availability of
observations over longer time spans allowed a more accurate determination.

Frequently the extant manuscripts of medieval astronomical handbooks
are uite different from the original works. Since the manuscripts were
copled by hand, many scribal errors occurred, in particular in the numbers
in the tables. Often we find additions to the text or the tables by later
users and i many cases parts from other works were inserted in place
of missing, outdated or unsuitable parts of the original work. Knowledge
of the origin of such added materials could give us important information
about the development of medieval astronomy and the immfluence of earlier
astronomers on later ones. However, in many cases the added material 1s
not properly attributed.

A useful method for determining from which sources tables in an astro-
nomical handbook derive 18 the comparison of mathematical properties of
the tables, e.g. the underlying function and parameter values, pecularities
of the method of computation such as intermediate rounding, the use of
(inverse) interpolation or inaccurate auxiliary tables, etc. This kind of in-
formation can sometimes be found in tabular headings or explanatory text,
but 1s often unreliable or simply missing. Not always 1s a given table based
on the indicated parameter values and only incidentally leads a recompu-
tation following the rules in the explanatory text precisely to the tabular
values. Sometimes tables are based on two different values for the same
astronomical parameter.

From the above it follows that for many tables in medieval astronomical
handbooks methods by which the mathematical properties can be deter-
mined directly from the tabular values are indispensable. Until recently
such methods were only applied ad hoc: tables were recomputed for vari-
ous historically attested parameter values and methods ot computation in
order to see which value and method led to the best agreement, the use
of linear interpolation was recognized from groups of constant tabular dif-
ferences, etc. Although many important results were found in this way,
there remained a large class of tables which defied a mathematical expla-
nation. Only in the last decade has a systematic approach to the analysis
of medieval astronomical tables with the use of advanced mathematics and
statistics and special computer programs been practiced by a small number
of scholars.

2. THE SMC RESEARCH PROJECT IN UTRECHT
In a SMC-supported research project at the Mathematical Institute of Ut-
recht University an extensive investigation of the application of statistical
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methods for the analysis of medieval astronomical tables was made. Firstly.
the conditions under which statistics can be applied to such tables, i.e. under
which errors in tables can be assumed to be random variables, were explored
(see below). Secondly, several estimators were developed for determining
unknown parameter values underlying medieval astronomical tables. Since
such tables mostly display values for complicated functions based on plane
or spherical trigonometry, the estimators are non-trivial. They include:

e Weighted estimator. Assume that we have a table with values
T'(x) for a function fy depending on a single parameter . Let g be a
function of two variables such that g(x, fo(2)) = 6 for every argument
r and every value of 6. The value of 8 underlying the table can then be
estimated from each single tabular value T'(z) using 6 ~ g(x,T(x)).
Bias and variance of these estimators can be approximated using a
Taylor expansion of g. Finally, a more accurate estimator is obtained
by computing a weighted sum of the separate estimators.

e Fourier Estimator. Let g be a 2m-periodic odd function and ¢ an
unknown constant. Let f be defined by f(x) = g(r — ¢) for every x.
It the Fourier series of f converges and the Fourier coefficients a, and
bi tor & > 0 are given by

1 2T 1 27
ap = — / f(x)coskrdax and b, = — / f(a)sin kx dx
T Jo ™ Jo

respectively, we have ay cos kc+ by, sin ke = 0 for every k. From a table
for f we can calculate approximations a; and IBAT to the Fourier coef-
ficients by replacing the integral by a finite sum and the (unknown)
functional values by tabular values. Then tanc can be estimated by
the quotients —ay/ 5;\: (or cote¢ by wgk /ar). These estimators have
some Interesting properties, e.g. they become degenerate if ¢ lies pre-
cisely between two consecutive arguments of the table for f.

e Least Number of Errors Criterion. According to this criterion an
unknown parameter value underlying an astronomical table is deter-
mined In such a way that the number of errors in the table is as small
as possible. The criterion can be given a statistical interpretation if
we assume a probability distribution for the tabular errors.

e Least Squares Estimator. The method of least squares was used
for determining multiple unknown parameters from a single table.

The accuracy of the estimators listed above was determined and confidence
intervals for the unknown parameters computed. Special user-friendly com-
puter programs were written to deal with the sexagesimal number system
(i.e. with base 60) in which values in medieval astronomical tables were
usually given. In these programs the estimators described above and many
specific methods of analysis can be conveniently applied.
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T'he SMC research project in Utrecht led to a large number of interesting
historical results which had not been possible without the use of statistical
methods and special computer programs. One of these was the recovery of
some of the lost tables of the important tenth-century Muslim astronomer
AbUl-Wafa> in a thirteenth-century astronomical handbook (see below).
Furthermore, the method of computation of various tables for complicated
functions which had thus far defied explanation, was discovered.

3. CAN STATISTICS BE APPLIED TO MEDIEVAL ASTRONOMICAL TABLES?
In order to apply statistical methods to ancient and medieval astronom-
ical tables, we assume that, in some sense, the tabular values behave as
random variables. We will investigate this in the case of three spherical-
astronomical tables by Ab@i’l-Wafa>. This important Muslim mathemati-
cilan and astronomer lived and worked in tenth-century Baghdad and is
known in particular for the advances he made in spherical astronomy and
i the calculation of accurate sine values. Abit’l-Wafs s major astronomical
work, the Almagest, has a structure similar to Ptolemy’s Almagest. Most
of the explanatory text concerning trigonometry, spherical astronomy and
the planetary models is extant in a manuscript i the Bibliothéque Na-
tionale in Paris. The text includes geometrical proots, directions for the
calculation of many useful quantities in spherical astronomy, and a large
number of numerical examples. However, the tables belonging to the orig-
mal work, explicitly indicated to follow the explanatory sections, are not
present; a possible reason is that the person who ordered the copying of the
manuscript, was only interested in the mathematics, not in the tables.

The Bibliotheque Nationale also possesses a unique manuscript of the as-
tronomical handbook of al-Baghdadi (thirteenth century), which is a mix-
ture of material from earlier works. al-Baghdadi explicitly states that he
used some of the lunar tables of Habash al-Hasib (Baghdad, c. 840) and the
solar equation table of Ab’l-Wafa>. Furthermore, he copled some inaccurate
tables for spherical astronomy from Kiishyar ibn Labban, a contemporary
of Abt'l-Wafa>. al-Baghdadi also included a more accurate set of tables
for trigonometry and spherical astronomy. By comparing the mathemat-
ical properties of these tables with the explanatory text in Abd’l-Wafa~s
Almagest, it is possible to show that the tables derive from that work.

We will now investigate the tabular errors in three of Abi’l-Wafi>’s tables
occurring in the astronomical handbook of al-Baghdadi. In each case T'(x)
denotes the tabular value for argument z and the tabular error e(x) is
defined as the difference between T'(x) and the exact functional value f(x):
e(r) = T(x) — f(x). A tabular value is called correct if it is equal to
f(x) rounded to the number of digits of the table concerned; otherwise,
the tabular value is said to contain an error. All tabular values considered
below are given in sexagesimal notation, i.e. to base 60. In transcriptions of
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sexagesimal numbers a semicolon denotes the sexagesimal point and further
sexagesimal digits are separated by commas. For instance, the sexagesimal
number 51;57,41,29 denotes 51 4+57-6071 +41-6072 +29-6073 and will be
sald to have three sexagesimal fractional digits or to be given to sexagesimal
thirds.

Erample 1: Abu’l-Wafa>’s sine table

Like many ancient and medieval astronomers, Abii’l-Wafa> tabulated the
trigonometric functions for a base circle with radius 60. Thus his sine ta-
ble displayed values for Sinx ! 60 - sina. These values were given to
sexagesimal thirds (e.g., T(60) = 51;57,41,29), which corresponds to an ac-
curacy of approximately seven decimal digits. Abii’l-Wafa”'s original table
1s known to have had values for each quarter of a degree, but the copy
which is extant in the handbook of al-Baghdadt only displays values for
each integer degree. Most of the ninety tabular values are correct; only

nine values contain Al error of £1 sexagesimal third. Figure 2 displays the
e

tabular errors e(r) = T'(x) — Sina in Ab@'l-Wafa>’s sine table for all argu-
ments x = 1,2,3,...,90. The nine tabular errors outside the range from

—0;0,0,0,30 to +0;0,0,0,30 correspond to the nine errors just mentioned. All
tabular errors within the range correspond to correct tabular values; they
are precisely the errors made in rounding exact sine values to the number
of digits of the table. It appears that these rounding errors behave like
independent random variables with a uniform distribution on the interval

—0;0,0,0,30, +0;0,0,0,30]. Below this idea will be further pursued.

Example 2: Abu’l-Wafa>’s tangent table |
Abu’l-Wafa~’s original tangent table displayed values for Tan r 60 - tan x
for each quarter of a degree; the values for arguments up to 45° had four
sexagesimal fractional digits (e.g., T(30) = 34;38,27,39,38), those for ar-
guments larger than 45°, three (e.g., 7'(60) = 103;55,22,58). Again in his
version of the table al-Baghdadi left out the tabular values for non-integer
arguments. |

The tabular errors e(x) < T'(z) — Tana in the tangent table do not
display a uniform pattern like that in the sine table. Instead they contain
a clear tendency towards larger errors for larger arguments. This pattern
can be explained as follows:
medieval astronomer usually calculated the tangent from his previously cal-
culated sine values according to

60 - Sin x
Sin (90 — x)
It he used sine values from a sine table with a fixed number of sexagesimal
fractional digits, the relative error in the denominator increased as x ap-
proached 90°. Since the error in the numerator remained of the same order,

Tanax =
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Figure 2. Plot of the tabular errors in Abi'l-Wafa>'s sine table.

the absolute error in the quotient increased. This is precisely what happens
with Abtu’l-Wata>s tangent table.

Figure 3 shows the differences between the tangent values presented by
al-Baghdadi and values recomputed from his sine table as described above.
The increasing tendency towards 90° has completely disappeared; instead,
both in the first halt of the table (although this is difficult to see from figure
3) and in the second half the differences appear to behave as independent
random variables. Although the calculation of tangent values from the sine
table as described above is a relatively easy and in principle completely
deterministic process, we note that the differences shown in figure 3 appar-
ently contain two sources of randommness: firstly, the random error in the
sine values; secondly, a more or less random error made in the division of
the sine values: apparently the quotient was not calculated to its full accu-
racy and the last digit was to a certain extent guessed. This led to the 15
differences larger than 0;0,0,0,0,30 for arguments between 0° and 45° and
to the 13 differences larger than 0:;0,0,0,30 for arguments between 45° and
90° which can be seen in figure 3.

It can be checked that changes in the underlying sine values of only one
sexagesimal third lead to clearly different tangent values. Theretore we
can be certain that the tangent table in the astronomical handbook of al-
Baghdadi was computed from his sine table. The outlying difference for
argument 41° is probably due to a scribal or computational error.
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Figure 3. Plot of differences between tangent table and reconstruction.

Example 3: Abu’'l-Wafa>’s solar declination table

The solar declination is the orthogonal distance on the heavenly sphere
between the sun and the equator. It can be calculated by applying the sine
law to the spherical triangle TSP in figure 4, where E denotes the earth,
s the sun, A the solar longitude (i.e., the length of the arc T.S along the
ecliptic), € the obliquity of the ecliptic, and é the declination. We have

O(A) = arcsin(sin e - sin \)

for each value of A. Practically every medieval astronomical handbook
contained tables for the solar declination and other spherical astronomi-
cal functions connected to the transformation of equatorial coordinates into

heavenly
sphere

equator

Figure 4. The calculation of the solar declination.
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ecliptical ones and vice versa, or to the determination of the time of the day
from observations of the sun or a fixed star.

gives values to sexagesimal thirds for arguments 1.2,3,...,90, do not dis-
play a uniform pattern like the ones above. Instead the errors tend to be
negative rather than positive and they are up to twenty times as large as
the level of rounding of the table (here we disregard the apparent outlier
for argument 79°). An explanation can only be found by following the cal-
culation of the tabular values step by step. For the calculation of the solar
declination according to the formula above, Abu’l-Wafa> needed:

1) sine values for arguments 1,2,3, ..., 90,
2) a value for sine, and
3) a method to calculate an arcsine.
Naturally he could take the required sine values directly from his table
of sines. Furthermore, he could calculate sins by performing interpolation
1in his sine table or by making a separate, more accurate, but highly elab-
orate calculation. Finally, he had to determine the arcsines by performing
some type of inverse interpolation in his sine table. In his Almagest Abu’l-
Walta- consistently used the value 23;35 for the obliquity of the ecliptic and
24;0,17,38 for Sine. This value can be obtained by performing a linear inter-
polation between the accurate values 23:55,29,48 for Sin 23:30 and 24:;9,53,17
for Sin 23;45 (as we have seen above, Abt’'l-Wafa”s original sine table dis-
played values for each quarter of a degree). Abu’l-Wafa> also described how
to determine the arc corresponding to a given sine value, namely by means
of inverse linear interpolation in his sine table. (Second order interpolation
schemes were also known around the year 1000 A.D., but were not widely
used for the computation of tables.)
It can be checked that Abu’l-Wata>’s table for the solar declination was
indeed computed using the value 24;0,17,38 for sine and inverse linear in- .
terpolation between accurate sine values for each quarter of a degree. If 175
we calculate the differences between Abu’l-Wafa>’s declination values and
values reconstructed according to this method of computation, we note the
following:

e Of the 90 differences seven have an absolute value larger than 4 sex-
agesimal thirds. Several of these outliers are close to round numbers
(5, 10 or 40 thirds), which makes it plausible that they were caused
by scribal or computational errors at some stage of the calculation.
The absolute value of three more differences is larger than 1% thirds.

e 53 differences lie between —0;0,0,0,30 and +0:0,0,0,30 and hence corre-
spond to declination values correctly calculated and rounded accord-
ing to the method of computation described above. These differences
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appear to behave like independent uniformly distributed random vari-
ables.

The remaining 27 differences have an absolute value between 0:0.0,0.30
and 0;0,0,1,30 and hence correspond to declination values in whose
calculation small errors were made. It appears that the behaviour of
these errors can be considered to be random. The following causes of
the errors can be conjectured:

1. For non-integer arguments we have used correct sine values to
sexagesimal thirds because Abu’l-Wafa>’s complete original table
is no longer extant. However, since the values for integer argu-
ments contain nine errors, it i1s probable that also the values for
non-iteger arguments contain errors. For example, the three
errors 1 the reconstructed declination values for arguiments 81
to 83 disappear if we assume an error of one unit in one of the
underlying sine values.

2. The product 24;0,17,38 - sin A was probably not calculated to its
tull accuracy. It might have been rounded or some of the smaller
terms of the product may simply have been left out.

e The differences are much larger in number and in size if inverse in-

terpolation within smaller or larger intervals of the sine table is used.
Apparently, the error pattern in the table is highly characteristic for
the intervals used for the interpolation.

Both 1n the case of the tangent and in the case of the solar declination we
have seen that if we take into account the systematic causes of error in the
tabular values and leave out the outliers caused by unpredictable scribal
or computational errors, we are left with errors that seem to behave like
independent random variables with distributions that can be assumed to
be equal for practical purposes. We will now discuss the distribution of the
tabular errors in some more detail.

4. THE PROBABILITY DISTRIBUTION OF TABULAR ERRORS
We have seen that the errors in medieval astronomical tables consist of the
following components:

1.

N

Scribal and computational errors, which are unpredictable but can
sometimes be corrected on the basis of the form of the numerals used
or by reconstructing the consecutive steps in the calculation of the
tabular values.

Systematic errors, which are due to the specific method of computa-
tion of the tabular values (cf. the tangent and solar declination tables
discussed above).
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3. Random errors, which can be considered to be independent and iden-
tically distributed. For a table with hardly any errors, this component
1s constituted by the rounding errors (cf. the correct values in the sine
table discused above); below we will argue that in many practical
cases the rounding errors can be counsidered to be independent and
uniformly distributed. Small non-systematic errors in a table (as we
have found in the tangent and solar declination tables) can be as-
sumed to be the result of inaccuracies in the steps of the calculation:
rounding of intermediate results, use of auxiliary tables with errors,
use of interpolation in auxiliary tables, etc. In this case the tabular
errors could be assumed to have a uniform distribution on the inter-
val corresponding to the level of rounding of the tabular values and
‘normal tails’ outside that interval.

4.1. Distribution of rounding errors

In particular in Abu’l-Wafa”s sine and tangent tables we have seen that
the rounding errors seemed to behave like random variables with a uniform
distribution. We will now argue that under certain conditions rounding
errors 1m a correct table of an astronomical function have approximately
a uniform distribution and can be assumed to be independent. First we
note that the values produced by the linear congruential random number
generator rp4+1 = (axp + ¢) mod m are rounding errors of a table with
equidistant arguments and unit m for an exponential function f(z) = ba™ +
d, where the constants b and d depend on a, ¢ and the initial value xy of
the sequence of random numbers. It seems reasonable to expect that under
certain conditions, in particular if the tabulated function is not (almost)
linear and if the number of sexagesimal fractional digits of the tabular values
1s sufficiently large, the rounding errors in tables occurring in ancient and
medieval astronomical handbooks have approximately a uniform probability
distribution and are independent. Thus we can for instance conjecture the
following:

Let T}, be a correct table with Ak sexagesimal fractional digits for the
non-linear function f, such that 73, has n tabular values for equidistant
arguments x;, ¢+ = 1,2,3,...,n 1n a fixed interval. For every argument
x; the tabular error ey, (x;) defined by ey, (x;) = Ty, (x;) — f(x;) is the
rounding error that we make by rounding the exact functional value f(x)
to the number of sexagesimal digits of the table. I will assume that this
rounding is performed in the modern way. Let Fj., be the experimental
distribution of the normalized rounding errors of the table T}, ,,, i.e., F. , (y)
is the fraction of rounding errors smaller than 60~ %y for every y. Note that

we have F} ,,(y) = 0 for every y < —5 and Fj,,(y) = 1 for every vy > +31.

Let F}j. be the limiting distribution of Fj.,, for n — oc.
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Conjecture. Fj converges to the uniform distribution on [—5,43] as &
tends to infinity.

For certain types of functions it may be possible to prove this conjecture by
means of the theory of uniform distribution modulo one. Let {a} denote the
fractional part of the real number ». For a given sequence x;, i = 1,2,3. ...
of real numbers let Ap;(a,b) be the number of terms »;, 1 < § < M, for
which {2;} € |a,b). The sequence a;, i = 1,2,3,... is said to be uniformly
distributed modulo one if

A A ((L, b)

[im — — =b—a forevery 0<a<b<1. (4.1)

Using the notation introduced above, our conjecture can now be stated
as follows: the sequence é - f(x) - 607, ¢ = 1,2.3,... is asymptotically
uniformly distributed modulo one for A& — oc.

Less general results can be obtained if we introduce randomness explic-
1itly. By means of an unpublished theorem by J.H.B. Kemperman it can be
shown that for a randomly chosen argument the distribution of the rounding
error converges to the uniform distribution as the number of sexagesimal
fractional digits tends to infinity. Since the roles of the argument and an
underlying parameter can be interchanged, the same holds for a randomly
chosen value of an underlying parameter.

We expect that the rounding errors in a table for a non-linear function will
become independent as the number of sexagesimal fractional digits tends
to infinity. For instance, we may conjecture that the joint experimental
distribution of rounding errors for arguments with fixed distances converges
to the joint distribution of independent uniform variables as the number of
sexagesimal fractional digits of the tabular values approaches infinity.
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